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On the Derivation of Quantum Kinetic Equations. 
I. Collision Expansions 
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A straightforward scheme for deriving quantum kinetic equations is 
presented. It is based on Bogoliubov's initial condition of vanishing correla- 
tions in the infinite past and consists in the elimination of an initial one- 
particle Wigner function between two nonlinear functionals. By performing 
the elimination to second order in the density the quantum analog of the 
Choh-Uhlenbeck three-particle collision term is obtained. The scheme may 
be extended to include relativistic particles as well as particles with internal 
degrees of freedom. 
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1, i N T R O D U C T I O N  

Since 1945 the der iva t ion  of  kinet ic  equat ions  has become one o f  the p r inc ipa l  
objects o f  stat ist ical  mechanics.  This deve lopment  was set into mot ion  mainly  
by Bogol iubov,  (1) who was the first to turn  the basic  idea  tha t  kinet ic  equa-  
t ions are special  solut ions o f  the  B B G K Y  hie ra rchy  into  a systematic  theory.  
In  la ter  years  the theory  has been worked  out  fur ther  by Uhlenbeck,  Choh ,  
Green,  and  Cohen,  a m o n g  others  (see, e.g., Ref. 2). S imul taneously ,  numerous  
o ther  app roaches  to the  p r o b l e m  have been developed.  We ment ion  the 
a p p r o a c h  o f  the  Brussels school,  (3) which,  in the  classical case, seems to lead 
to the same results as the  Bogol iubov  theory.  (4'5) 

Al l  methods  for  f inding special solut ions o f  the h ie rarchy  have in c o m m o n  
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that at one point or another an assumption of a statistical nature has to be 
introduced. Such an assumption, which may be understood as a restriction 
on the class of dynamical systems that are being considered, appears quite 
explicitly both in the Bogoliubov theory (Ref. 1, Chapter 9a) and in the work 
of the Brussels school (Ref. 3, Chapter 16.4; Ref. 6). It may be stated as the 
condition that the correlations present in the initial state should have no 
marked influence on the behavior of the system in the limit of times long 
compared to the duration of a collision. It is obvious that such a condition is 
necessary in order that the time evolution of the system may be predicted 
through a knowledge of the present state alone. The problem of kinetic theory 
is now to prove that it is also sufficient. 

In the present paper we investigate to what extent the condition that 
initial correlations may be ignored suffices to derive a quantum kinetic 
equation. The discussion is much facilitated by the concept of the so-called 
in-picture/7~ This picture has been introduced in field theory as a means for 
characterizing an interacting system by its asymptotic properties. As we shall 
see, the in-formalism is well suited for the purpose of imposing the initial 
condition on the system. 

Subsequently, we present a straightforward scheme for obtaining a 
quantum kinetic equation. It consists in writing both the Wigner function and 
the interaction term of the dynamical equation that it satisfies in terms of 
initial distribution functions. If the aforementioned condition is imposed, 
these expressions become nonlinear functionals of a one-particle initial 
distribution function. By elimination of this distribution function a kinetic 
equation may be obtained. 

The applicability of our approach thus rests, like the classical theory of 
Green ~8~ and Cohen, ~9~ on the mathematical question of whether a satisfactory 
elimination scheme can be found. Obvious possibilities are a scheme based on 
density expansions, or on expansions in terms of the interaction strength, or 
on a combination of both. We shall use the first possibility to derive the 
quantum analog (1~ of the Choh-Uhlenbeck collision term. (11~ In a subsequent 
paper (12~ we consider the derivation of the nonlocal Uehling-Uhlenbeck 
equation employing an expansion in terms of  the interaction strength. 

We mention that application of the theory is not restricted to the non- 
relativistic regime. Since the second quantization formalism is used through- 
out, it can also be generalized to the relativistic case. For  dilute systems it then 
leads to the relativistic Boltzmann equation5 TM The extension of the theory 
to particles with spin has also been considered. (1~ To lowest order in the 
density the ensuing kinetic equation is the Waldmann-Snider equation for 
spin particles. ~5~ An implication is that the initial condition adopted by 
Snider (~6~ is a particular instance of  the initial condition as it will be 
formulated further on. 
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2. D Y N A M I C A L  EQUATION 

We consider a system described by a Hamiltonian of the form 

H = Ho(t) + H,(t) (1) 

where the free Hamiltonian is given by 

Ho(t) = f d3p (p2/2m)at(p, t)a(p, t) (2) 

and the interaction Hamiltonian by 

Hz(t) = �89 f dSpl d3p2 dSpl ' dap2 ' 

x ~(3~(pl + P2 - P~' - p2')v(p~, P2; P~', P2') 

x a*(pl, t)at(P2, t)a(p2', t)a(pl', t) (3) 

The function v characterizing the interaction between the particles has to 
satisfy the requirement 

v(pl, P2 ;P~', P2') = v*(pl', P2'; Pa, P2) (4) 

in order that the operator HI is Hermitian. The construction operators satisfy 
the Heisenberg equation of motion 

ih ~3~a(p, t) = [a(p, t), H] (5) 

and the equal-time (anti-) commutation relation 

a(p, t)at(p ', t) - -qd(p', t)a(p, t) = 6~a~(p - p') (6) 

where ~7 is equal to one for bosons and equal to minus one for fermions. 
To describe the statistical properties of the system, one may introduce 

the one-particle Wigner function, which in the second quantization formalism 
is defined as (17) 

f (x ,  p, t) = (2 h)-a f dau [exp(iu.x/h)](d(p - �89 t)a(p + �89 t)) (7) 

The angular brackets designate the statistical average. For this Wigner func- 
tion which is the quantum analog of the classical one-particle distribution 
function, we seek to establish a kinetic equation. 

For the following we shall find it convenient to represent the Wigner 
function in a different but equivalent form. To this end we introduce the total 
momentum operator 

= ~ dap pat(p, t)a(p, t) (8) P 
J 
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Its commutation rule with a(p, t) is 

[a(p, t), P] = pa(p, t) (9) 

We use this fact together with the formal solution of the Heisenberg equation 
(5) to write the Wigner function (7) as 

f(x,  p, t) = ( e x p [ i ( H t  - P.x)/h] ~b(p) e x p [ - i ( H t  - P.x)/h]} (10) 

where ~b(p) is the operator 

~b(p) = (2zrh) -3 f d3u a*(p - �89 + �89 (11) 

Here and henceforth we shall use the convention that a deleted time argument 
means t = 0. 

We now derive the exact equation satisfied by the Wigner function (10) 
by taking its time derivative. With the explicit form (2) of the free Hamiltonian 
and the (anti-) commutation rule (6) one easily obtains 

( ~  + P . v ) f ( x ,  p, t) 

= ( e x p [ i ( H t  - P.x)/h] (I)(p)exp[-i(Ht - P.x)/h]} (12) 

with the operator O(p) given by 

O(p) = ( ih)-  limb(p),//1] (13) 

The dynamical equation (I 2) together with the expression (10) for the Wigner 
function will serve as the starting point for our considerations. 

We mention that the right-hand side of (12) may be worked out by 
employing the explicit form o f / / i  as given in (3). One then finds the first 
member of the quantum mechanical hierarchy, which links the time evolution 
of the one-particle Wigner function to that of the two-particle Wigner func- 
tion. (17) However, this fact will play no role in the theory to be developed 
here. 

3. I N - P I C T U R E  

In scattering theory (v one defines an evolution operator U(t,  to) which 
satisfies the integral equation 

U(t,  to) = ~ - ~ d t '  f I , ( t ' ) [ e x p ( - E l t ' l ) ] U ( t ' ,  to) (14) 
o 

By/4z(t) we denote the interaction Hamiltonian in the interaction picture: 

fI1(t)  = eiUotmHie - ~ d m  (15) 
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For the following, the Moller wave operator 

U ( 0 , - o o ) =  lim U(O, to) (16) 
to-~ - - c o  

will be of particular importance. In the absence of bound states this operator 
is unitary 

U * ( 0 , - m )  = U - l ( 0 , - ~ )  (17) 

Furthermore, it satisfies the intertwining relation 

HU(O, - oo) = U(0, - oo)Ho (18) 

With the help of the Moller wave operator one may construct the so- 
called in-operators (7) 

a i . ( p )  = u ( 0 ,  - ~ ) a ( p ) g * ( 0 ,  - o0 )  ( 1 9 )  

and 

a~*n(p) = U(0. - cc)a*(p) U*(0, - oo) (20) 

Since we exclude bound states, the Moller operator is unitary, whence the 
in-operators satisfy the canonical (anti-) commutation relation 

al.(p)a~*n(p') - ~?a*~.(p')a~n(p) = ~(S)(p _ p,) (21) 

The in-picture is convenient because it gives a description of the system in 
terms of the initial situation in which the particles are far apart and therefore 
moving freely. This last feature is demonstrated by the time development law 
of the in-operators, which, as a consequence of the intertwining relation (18), 
is the same as for free particles 

emtmain(p)e -imm = ai.(p)e -i~~ (22) 

Here the notation pO is used for the energy p2/2m. Because of the transla- 
tional invariance of the system, the Moller operator commutes with the total 
momentum operator (8) and we have 

e x p ( -  iP.  x/h) a~,(p) exp(iP, x/h) = ai,(p) exp(ip, x/h) (23) 

for the behavior of atn under space translations. 
The unitarity of the Moiler operator implies that any operator may be 

written in terms of in-construction operators. In the following we shall 
consider in particular the operators r and (I)(p) defined in (11) and (13), 
respectively. We write their expansion in terms of in-operators as 

~=2 1 f dap" dSp'~(I)~)(p~; p'"[p)a~n(pn)ai~(p 'n) (24) �9 (p )  = = 



276 Ch. G. van W e e r t  and W. P. H. de Boer 

and 

where we have 
clap1 ... dap,, and 

~b(p) - ~bl,(p ) = ~. ,* u ~-,~ ,~. , P [ P )  *n(P ) *~(P ) (25) 

used the short-hand notations p ~ =  (p~,...,p,), dap"= 

a/n(p ") = at*n(pl)"" a~n(p,) (26) 

al~(p ") = aln(p~)"'" am(P1) (27) 

Note the order of the operators in the last line. The expansion coefficients 
q)(~ and ,/,<~ *n ~-m are by definition (anti-) symmetric functions of their primed 
variables p'" as well as their unprimed variables pn. They may be determined 
with the help of perturbation theory, as we shall see in a subsequent paper3 ~2~ 
For the moment we confine ourselves to stating that they are related to the 
scattering amplitudes describing two-particle, three-particle, etc., collision 
processes. 

4. INITIAL CONDIT ION 

To obtain a kinetic equation from the dynamical equation (12) one needs 
some kind of assumption that makes it possible to express the correlations 
created by the interactions in terms of the one-particle Wigner function. Now 
experience suggests that in many systems of interest correlations decay within 
a few collision times. Following Bogoliubov, m we suppose that in such 
systems the initial correlations have no effect on the behavior of the system 
for times long as compared to a characteristic collision time. In other words, 
we assume that in this limit the initial correlations may be ignored. In our 
formalism the absence of initial correlations is expressed as 

= ( a i n ( p ~ ) a , n ( p , ~ ) )  (ai+n(p'~)a,n(p'n)) ~ "q~(a**n(pl)ain(pl')) "'" + (28) 

where the sum runs over all permutations of the labels of the primed or 
unprimed momenta. The exponent ~ is even or odd depending on whether 
the permutation is even or odd. Formally, the factorization rule (28) may be 
obtained by treating the initial state as an ideal gas in equilibrium and 
employing the thermodynamic Wick theorem. (18~ 

We now proceed by applying condition (28) to the dynamical equation 
(12). We first substitute the expansion (24) into its right-hand side. We note 
that, because of (23) and the time development law (22), the exponential 
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operators give rise to a phase factor which can be brought outside the 
average. With the factorization rule (28) we then obtain 

[St + (p/m). V]f(x, p, t) 

i (  dapn d3P'~ cb(n)(,,, p',~lp) 
~ 2 

x e x p { i ~ [ ( P j ~ 1 7 6  

x l-~ (ak(pk)ai,(p~')) (29) 
k = l  

All n l permutations have given the same contribution on account of the 
(anti-) symmetry properties of the functions r 

Next we introduce the initial Wigner function 

f , ( x ,  p, t) = (2~rh)-a i dau { e x p [ i ( u . x -  ~/~ 

x (ai*n(p - �89 + �89 (30) 

where u ~ stands for u.p/m. We note that it satisfies the equation 

[St + (p/m).VJfn(x, p, t) = 0 (31) 

Formula (30) may be inverted to read 

(ai*n(p - �89 + �89 

= f dax {exp[ - i (u .x  - u~ p, t) (32) 

If we now use this last formula in (29), after changing variables according to 
pj --> p / -  �89 s and p/--+ Ps + �89 we get 

[8, + (p/m).V]f(x, p, t) 

= d ax" daP" -in&(")(Y=v-, p"lx, p) r -~fn(xj  , pj, t) (33) 
= f = l  

where the functions &("~ -,n are defined as the Fourier transforms 

~<-~t'Y- p"[x, p) 

=/dau'~{exp[i~.j.(x-xj)/hl)r189189 (34) 

of  the functions r 
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At this point it is a straightforward matter to establish a similar expansion 
for the Wigner function (10). Following the same reasoning, we find with the 
in-operator expansion (25) and the initial condition (28) 

f (x ,  p, t) - f~(x, p, t) 

2J = d3x  ~ d3p" @~X)(I", p~l x, p)~J~ f~n(xy, p,, t) (35) 
n = 2  ] = i  

The functions ,~) are Fourier transforms of the functions ~b~ ) as in (34). 
It should be appreciated that the " ~n) ~ coefficients qh~ and -~i~, which contain 

the dynamical information about the system, are not independent. In fact, 
one may be obtained from the other by integration, or, inversely, by differen- 
tiation. Indeed, applying the operator ~ + (p/m)- V to both sides of Eq. (35), 
we deduce with the help of (31) that the relation 

V + .Vj ~ ) ( x ~ ,  p~lx, p) = - i . , - =  , 
j = l  

should hold. 

5. D E R I V A T I O N  O F  A K I N E T I C  E Q U A T I O N  

The two expansions (33) and (35), which may be considered as time- 
independent functionals of the Wigner function f n ,  are the central formulas 
of our theory. They have been obtained by means of one assumption only, 
namely, that initial correlations, save for those dictated by the boson or 
fermion symmetry, may be ignored. (Molecular chaos in the infinite past.) 
The physical significance of the various terms is the same as in the classical 
theory, where one obtains similar formulas~9~; the expansion is one in terms 
of the collisions of isolated groups of particles. The n = 2 terms correspond 
to binary collisions, the n = 3 terms to triple collisions, and so forth. 

In concept the method for obtaining a kinetic equation is now simple. It 
consists in the elimination of the Wigner funct ionfn between the two expan- 
sions (33) and (35). If  this can be achieved in any meaningful way, one 
obtains a closed Markovian equation for the one-particle Wigner function 
f (x ,  p, t), i.e., a kinetic equation. The problem is thus to find a suitable 
elimination scheme. 

In the classical theory one solves the analog of Eq. (35) by using the 
particle number as an ordering parameter. Following the same procedure 
here, we find by iteration up to terms quadratic in f ,  

f f n ( x ,  t)  = f ( x ,  t) - dx  2 ~ ) ( x 2 1 x )  l--[ f ( x j ,  t) (37) 
J = l  



On the Derivation of Quantum Kinetic Equations. I 279 

with x denoting the vector pair (x, p). The substitution of  this result into (33) 
yields the kinetic equation 

[~t + (p/m)-V]f(x, t) 

j = dx 2 ~ ) (x2 lx ) l -~ f (x j ,  t) 
Y = I  

+ dx 3 [~) (xa lx)  - 2 -(e) 2 ~(2) dy r (x [Y)q)l~ (Y, xalx)] 1~  f(x~, t) 
Y = I  

(38) 

which is valid up to terms that contain the product of three Wigner functions. 
If the system is sufficiently uniform in space, the first term on the right-hand 
side reduces to the usual Boltzmann collision term, with a quantum mechani- 
cal transition rate. (la) The second term is the quantum mechanical analog of  
the classical three-particle collision term first derived by Choh and Uhlen- 
beck. m~ We shall not attempt to prove here that in the classical limit the 
quantum mechanical three-particle term indeed coincides with the Choh-  
Uhlenbeck expression. This requires a careful analysis of  the relation between 
the quantum mechanical and classical three-particle scattering problems. 
It is, however, worth mentioning that the structure of the two collision terms 
is quite similar and that the Moller operator defined in (16) is the quantum 
mechanical counterpart of the streaming operators appearing in the classical 
theory. 

In principle also the higher order correction terms to (38) could be 
obtained successively. However, we know from the classical theory that this 
iteration procedure, which uses the particle number as an ordering parameter, 
leads to infinite results for these higher order terms. (2~ Since we have no 
reason to suppose that this situation is any different in the quantum 
mechanical case, we shall not pursue this line of  investigation. 

A second approach to the elimination problem is to employ the inter- 
action strength as an ordering parameter and to expand the functions 
~(n~ and ,/,(n) into a perturbation series. In the subsequent paper (12~ we shall in "Fin 

perform the calculations up to first order. It will then appear that in this order 
the kinetic equation (38) is in fact the nonlocal version of the well-known 
Uehling-Uhlenbeck equation. 
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